Well-posedness for the generalized Benjamin-Ono equations with arbitrary large initial data in the critical space

نویسنده

  • Stéphane Vento
چکیده

We prove that the generalized Benjamin-Ono equations ∂tu + H∂2 xu ± u ∂xu = 0, k ≥ 4 are locally well-posed in the scaling invariant spaces Ḣsk(R) where sk = 1/2 − 1/k. Our results also hold in the nonhomogeneous spaces Hsk(R). In the case k = 3, local well-posedness is obtained in Hs(R), s > 1/3.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

. A P ] 2 1 O ct 2 00 2 LOCAL WELL - POSEDNESS FOR DISPERSION GENERALIZED BENJAMIN - ONO EQUATIONS

In this paper we study local well-posedness in the energy space for a family of dispersive equations that can be seen as dispersive " interpolations " between the KdV and the Benjamin-Ono equation.

متن کامل

Application of the new extended (G'/G) -expansion method to find exact solutions for nonlinear partial differential equation

In recent years, numerous approaches have been utilized for finding the exact solutions to nonlinear partial differential equations. One such method is known as the new extended (G'/G)-expansion method and was proposed by Roshid et al. In this paper, we apply this method and achieve exact solutions to nonlinear partial differential equations (NLPDEs), namely the Benjamin-Ono equation. It is est...

متن کامل

Well-posedness in H for the (generalized) Benjamin-Ono equation on the circle

We prove the local well posedness of the Benjamin-Ono equation and the generalized Benjamin-Ono equation in H(T). This leads to a global wellposedness result in H(T) for the Benjamin-Ono equation.

متن کامل

Sharp Well-posedness Results for the Generalized Benjamin-ono Equation with High Nonlinearity

We establish the local well-posedness of the generalized BenjaminOno equation ∂tu+H∂ xu±u ∂xu = 0 in Hs(R), s > 1/2−1/k for k ≥ 12 and without smallness assumption on the initial data. The condition s > 1/2−1/k is known to be sharp since the solution map u0 7→ u is not of class Ck+1 on Hs(R) for s < 1/2 − 1/k. On the other hand, in the particular case of the cubic Benjamin-Ono equation, we prov...

متن کامل

Well-posedness and Regularity of Generalized Navier-stokes Equations in Some Critical Q−spaces

We study the well-posedness and regularity of the generalized Navier-Stokes equations with initial data in a new critical space Q α;∞ (R ) = ∇ · (Qα(R )), β ∈ ( 1 2 , 1) which is larger than some known critical homogeneous Besov spaces. Here Qα(R ) is a space defined as the set of all measurable functions with sup(l(I)) Z

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008